The Crystal Structure of Hexagonal $\mathbf{R b N i F}_{\mathbf{3}} \mathbf{(6 H)}$ *

R. J. ARNOTT \dagger and J. M. LONGO
Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Massachusetts 02173

Received May 6, 1970

Abstract

At atmospheric pressure, RbNiF_{3} has the hexagonal BaTiO_{3} structure. The variation of its lattice parameters is studied from -175 to $600^{\circ} \mathrm{C}$ and shows no anomaly. The coefficient of thermal expansion α_{a} increases from 14×10^{-6} to $27 \times 10^{-60} \mathrm{C}^{-1}$ and α_{c} increases from 11×10^{-6} to $28 \times 10^{-6} \mathrm{C}^{-1}$. Our refinement of position parameters using powder pattern intensities leads to results that are in essential agreement with those of Babel. However, disagreement in the fluorine positions lead to significantly different interatomic distances and angles. These differences are discussed in terms of similar known structures, published nmr data and electrostatic repulsion and screening of ions.

RbNiF_{3} exists in two modifications. At ambient pressure (1), it has the hexagonal BaTiO_{3} (6 H) structure (2) while at high pressure ($\sim 25 \mathrm{kbar}$) its structure transforms to the cubic perovskite type $(3,4)$ with $a=4.07 \AA$. This pressure transformation is similar to those found for many compounds with a general formula ABX_{3} having hexagonal or cubic close-packed AX_{3} layers (3-6).

The hexagonal form of RbNiF_{3} is of considerable interest because of its ferrimagnetic (7,8) and optical properties $(9,10)$. Since accurate bond distances and angles are necessary for any quantitative interpretation of physical properties, we undertook the refinement of the atomic position parameters of $\mathrm{RbNiF}_{3}(6 \mathrm{H})$.

The structure has only five variable parameters. Since the powder pattern is not complex, we chose to use intensity data collected on powdered samples. After we had obtained a satisfactory refinement of our data, we became aware of a recent paper by Babel (11), who refined the parameters of this structure using intensity data from a single crystal. Our results are in essential agreement with those of Babel, but we find significant discrepancies in the positions of the fluorines. The resulting differences in bond distances (Ni-F, F-F, Rb-F) and Ni-F-Ni angles are discussed in light of published nmr data

[^0](12) and the structures of BaTiO_{3} (2), CsMnF_{3} (13), CsCoF_{3} (11), and $\mathrm{CsNiF}_{3}(11)$.

Experimental

All material used in this study was taken from a large single crystal of RbNiF_{3} prepared by the Bridgman method using a graphite crucible sealed in a nickel bomb. Lattice parameters of hexagonal RbNiF_{3} were obtained over the temperature range -175 to $600^{\circ} \mathrm{C}$. At room temperature, peak positions were taken from a slow-scan ($\frac{1}{4}^{\circ} / \mathrm{min}$) diffractometer pattern using a Norelco goniometer and monochromated (LiF crystal) $\mathrm{CuK} \alpha$ radiation. These were corrected by use of an external standard. For lattice parameters below room temperature, the same equipment was used except that the sample was deposited on a copper plate with acetone. The copper plate is cooled in a stream of N_{2} which has been passed through a large copper coil immersed in liquid N_{2}. The temperature is controlled by varying the gas flow rate and monitored by a copperconstantan thermocouple attached to the copper plate. A G.E. diffractometer with a Tem-Pres furnace attachment was used to determine the lattice constants of RbNiF_{3} above room temperature. The sample was held in a nickel holder and protected by a continuous flow of dry nitrogen. Lattice parameters were obtained for all temperatures by refinement of 2θ values using the simplex method with a computer program written in our laboratory.

Fig. 1. Crystallographic parameters of $\mathrm{RbNiF}_{3}(6 \mathrm{H})$ as a function of temperature.

Intensity data at room temperature were collected on a Norelco diffractometer by accumulating counts while scanning ($1^{\circ} / \mathrm{min}$) over the peak, or groups of peaks, and subtracting background. The value of background at any particular 2θ value was taken from a curve constructed from background readings in regions containing no peaks.

Below room temperature, intensity data were collected by measuring the area under the peaks of the same diffractometer tracings used for latticeparameter determinations.

Refinement of variable atomic-position parameters and cell temperature factor was made using a Fortran program which minimized the discrepancy factor

$$
R=100 \cdot \sum_{i}\left|I_{i}^{\mathrm{calcd}}-I_{i}^{\mathrm{obsd}}\right| / \sum_{i} I_{i}^{\mathrm{bsd}}
$$

The atomic scattering factors for $\mathrm{Rb}^{+}, \mathrm{Ni}^{2+}$, and F^{-} were those of Cromer and Waber (14), while the real and imaginary parts of the anomalous dispersion terms were taken from Cromer (15). The intensity data were corrected for the polarization due to the curved LiF diffracted-beam monochromator.

Results and Discussion

We found the lattice parameters of $\mathrm{RbNiF}_{3}(6 \mathrm{H})$ at room temperature to be $a=5.843 \AA$ and $c=$
$14.309 \AA$, which are identical to those previously reported (l). The variation of the lattice parameters in the temperature range -175 to $600^{\circ} \mathrm{C}$ is shown in Fig. 1. No change in symmetry or anomaly in the temperature dependence of the lattice parameters was noted over the entire temperature range, which includes the Curie point. Although this structure can be described in terms of RbF_{3} close-packed layers with nickel ions filling the fluorine octahedra formed between layers, the coefficients of linear thermal expansion in the a and c directions are very similar. Over the temperature range studied, α_{a} increases from 14×10^{-6} to $27 \times 10^{-60} \mathrm{C}^{-1}$ and α_{c} from $11 \times$ 10^{-6} to $28 \times 10^{-60} \mathrm{C}^{-1}$. This almost constant c / a ratio ($2.450-2.446$) is consistent with our determination of the three-dimensional character of the bonding in this structure.
$\mathrm{RbNiF}_{3}(6 \mathrm{H})$ has the hexagonal BaTiO_{3} structure (2) indicated in Fig. 2. It contains face-shared pairs of NiF_{6} octahedra connected by single octahedra sharing only corners. The rubidium ions, which fill the six large voids per unit cell of this octahedra network have twelvefold coordination. There are two different positions for each type of atom, as shown in Fig. 2 and Table I.

Refinement on thirty-five intensities gives the cell temperature factor and the five variable position parameters listed in Table I with a reliability factor

Fig. 2. Essential features of the $\mathrm{RbNiF}_{3}(6 \mathrm{H})$ structure.
$R=5.8$. The estimated errors were established by determining the amount of change in the parameters which would cause a significant deterioration in the R factor. Table II presents a comparison of all the observed intensities with those calculated from the results of the refinement. The reliability factor here is $R=6.9$. It should be noted that seven of the intensities listed were not used in the refinement. The strongest line $(100,104)$ was eliminated because it had too much influence on the refinement; the other six lines were not used because they contained more than three reflections contributing to a single intensity. A value of 0.05 was assigned in the refinement to those reflections whose intensities were not observed. They are labeled in Table II by an asterisk.

Refinement of intensity data collected at -100 and $-175^{\circ} \mathrm{C}$ resulted in essentially the same structure as at room temperature, but with larger error brackets for the parameters. The very rough surface of the sample resulting from the method used to apply it to the copper block no doubt reduced the quality of the data.

Babel's position parameters (11) from a singlecrystal structure refinement are included in Table I. They show good agreement with our cation parameters, but significant differences with our fluorine positions. Most affected by this discrepancy are the $\mathrm{F}_{1}-\mathrm{F}_{\mathrm{I}}$ distance and $\mathrm{Ni}_{1 I}-\mathrm{F}_{\mathrm{I}}-\mathrm{Ni}_{1 I}$ angle. A comparison of interatomic distances and angles resulting from Babel's refinement and ours is given in Table III. The important interatomic distances and bond angles obtained from our refinement are also shown in Fig. 2, which gives all the essential features of this structure.

The $\mathrm{Ni}_{\text {II }}^{2+}$ ions, which share a common octahedralsite face, are forced apart by electrostatic repulsive forces, and are separated by $2.75 \AA$ instead of $2.38 \AA(1 / 6$ of $c)$. Similarly, the $\mathrm{Rb}_{\text {II }}^{+}$ions are displaced along the z axis away from the approaching $\mathrm{Ni}_{\mathrm{II}_{\mathrm{I}}^{2+}}^{2+}$, but to a lesser extent because of the larger separation and smaller charges involved. The F_{1}^{-} ions forming the common octahedral-site face between the $\mathrm{Ni}_{\text {II }}^{2+}$ ions should be drawn in tightly to form a smaller triangle that can better screen the $\mathrm{Ni}_{\mathrm{II}}^{2+}$ ions from one another. Since the $\mathrm{Ni}_{1 \mathrm{II}}-\mathrm{Rb}_{\text {II }}$ separation is smaller than the $R b_{1}-N i_{1}$ separation the triangle of $\mathrm{F}_{\text {II }}^{-}$ions between the $\mathrm{Ni}_{\mathrm{II}}-\mathrm{Rb}_{\mathrm{II}}$ pair

TABLE I
Crystal Structure of $\mathrm{RbNiF}_{3}(6 \mathrm{H})$

Space group:	$\mathrm{P6}_{3} / \mathrm{mmc}$ (No. 194)
Unit cell dimensions:	$a=5.843 \AA ; c=14.309 \AA$
Cell contents:	$6 \mathrm{RbNiF}_{3}$
Rb_{1} in (2b)	$\pm(0,0,1 / 4)$
$\mathrm{Rb}_{\text {II }}$ in (4f)	$\begin{aligned} & \pm(1 / 3,2 / 3, z ; 2 / 3,1 / 3,1 / 2+z) \\ & z=0.0954(2) ; 0.0954(7)^{a} \end{aligned}$
Ni_{1} in (2a)	(0, 0, 0, 0, 0, 1/2)
$\mathrm{Ni}_{\text {II }}$ in (4f)	$\begin{aligned} & \pm(1 / 3,2 / 3, z ; 2 / 3,1 / 3,1 / 2+z) \\ & z=0.8462(5) ; 0.8450(8)^{a} \end{aligned}$
F_{1} in (6h)	$\begin{aligned} & \pm(x, 2 x, 1 / 4 ; 2 x, x, 3 / 4 ; x, \hat{x}, 1 / 4) \\ & x=0.517(1) ; 0.5023(82)^{a} \end{aligned}$
$\mathrm{F}_{\text {II }}$ in (12k)	$\begin{aligned} & \pm(x, 2 x, z ; 2 x, x, \bar{z} ; x, \bar{x}, z ; x, 2 x, 1 / 2-z ; 2 x, x, 1 / 2+z ; \bar{x}, x, 1 / 2+z) \\ & x=0.830(3), 0.8313(89)^{a} ; z=0.081(1), 0.0740(17)^{a} \end{aligned}$
Cell temperature factor:	$\mathrm{B}=1.9(1)$

[^1]TABLE II
Observed and Calculated Intensities for $\mathrm{RbNiF}_{3}(6 \mathrm{H})$
$\left.\begin{array}{cccccc}\hline I_{\text {obsd }} & I_{\text {cacld }} & h k l & I_{\text {obsd }} & I_{\text {catcd }} & h k l \\ \hline * & 0.01 & 002 & & & 312 \\ * & 0.02 & 100 & 0.3 & 0.36 & 306 \\ 2.7 & 2.34 & 101 & & & 1010 \\ 0.1 & 0.15 & 102 & & & 224 \\ 0.4 & 0.99 & 004 \\ 12.2 & 12.23 & 103 \\ 100.0 \dagger & 105.51 & 110 \\ 0.2 & 0.08 & 104\end{array}\right\}$

[^2]TABLE III
Some Interatomic Distances (\AA) and Angles (${ }^{\circ}$) in $\mathrm{RbNiF}_{3}(6 \mathrm{H})$

$\begin{array}{r} R \mathrm{~b}_{1}-6 \mathrm{~F}_{\mathrm{t}} \\ 6 \mathrm{~F}_{\mathrm{II}} \end{array}$	2.93		$\mathrm{F}_{\mathrm{I}}-2 \mathrm{~F}_{\mathrm{I}}$	2.62 (2.88)
	2.97		$2 \mathrm{~F}_{1}$	3.22(2.96)
			$4 \mathrm{~F}_{11}$	2.89(3.02)
$R b_{\text {II }}-6 \mathrm{~F}_{\text {II }}$	2.93			
$3 \mathrm{~F}_{\text {II }}$	3.02		$\mathrm{F}_{\text {II }}-2 \mathrm{~F}_{\text {II }}$	2.86(2.89)
$3 \mathrm{~F}_{1}$	2.89		$2 \mathrm{~F}_{\text {II }}$	2.89(2.72)
			$2 \mathrm{~F}_{\mathrm{II}}$	2.98(2.96)
$\mathrm{Ni}_{1}-6 \mathrm{~F}_{11}$	2.07		2 F	2.89(3.02)
$\mathrm{Ni}_{\text {III }}-1 \mathrm{Ni}_{\text {II }}$	2.75			
$3 \mathrm{~F}_{1}$	2.05			
$3 \mathrm{~F}_{\mathrm{II}}$	1.95			
$\mathrm{F}_{11}-\mathrm{Ni}_{1}-\mathrm{F}_{11}$			85.2); 91.8	94.78)
$\mathrm{F}_{1}-\mathrm{Ni}_{1 \text { II }}-\mathrm{F}_{\text {I }}$			84.2)	
$\mathrm{F}_{\text {II }} \mathrm{N}:{ }_{\text {II }} \mathrm{F}_{\text {II }}$			90.6)	
$\mathrm{F}_{\mathrm{I}}-\mathrm{Ni}_{\text {III }}-\mathrm{F}_{\text {II }}$				
$\mathrm{Ni}_{11}-\mathrm{F}_{1}-\mathrm{Ni}_{\text {II }}$			78.5)	
$\mathrm{Ni}_{1}-\mathrm{F}_{11}-\mathrm{Ni}_{\text {II }}$			(177.0)	

would also contract somewhat causing the $\mathrm{F}_{\mathrm{II}}{ }^{-}$ triangle between the $\mathrm{Ni}_{1}-\mathrm{Rb}_{1}$ pair to expand. Thus we would expect the F_{I} triangles between the $\mathrm{Ni}_{\mathrm{II}^{-}}$ $\mathrm{Ni}_{\text {II }}$ pairs to have the shortest edges, the $\mathrm{F}_{\text {II }}$ triangles between the $\mathrm{Ni}_{\text {II }}-\mathrm{Rb}_{\text {II }}$ pairs to have the next shortest edges, the F_{II} triangles between $\mathrm{Ni}_{1}-\mathrm{Rb}_{\mathrm{I}}$ pairs to have longer edges, and the F_{I} triangles between the $R b_{\text {II }}-R b_{\text {II }}$ pairs to have the longest edges.

As the $\mathrm{Ni}_{\mathrm{II}}^{2+}$ ions move apart, the $\mathrm{Ni}_{\mathrm{II}}-\mathrm{F}_{\mathrm{II}}$ distances would be significantly shortened relative to the other Ni-F distances. The $\mathrm{Ni}_{1 \mathrm{II}}-\mathrm{F}_{\mathrm{I}}$ distance would tend to be lengthened by the Ni displacement but shortened by the contraction of the F_{I} triangle. The $\mathrm{Ni}_{1}-\mathrm{F}_{\mathrm{II}}$ distance would tend to be lengthened by the expansion of the F_{II} triangle but be compensated by a compression of the F_{II} octahedra along the z axis so as to keep the bond distance nearly normal. Thus we would expect the $\mathrm{Ni}_{\text {II }}, \mathrm{F}_{\text {II }}$ distance to be the shortest and the other $\mathrm{Ni}-\mathrm{F}$ distances to be about equal and close to normal.

Our F-F and Ni-F distances are in agreement with the above description and are shown in Fig. 2 and in Table III, which also includes Babel's results for comparison. It should be noted that there is a significant difference between the $\mathrm{F}_{1}-\mathrm{F}_{\mathrm{I}}$ distances we find (2.62 and $3.22 \AA$) and those found by Babel (2.88 and $2.96 \AA$). In isostructural compounds, the shorter of these distances always shows a marked contraction and is $2.69 \AA$ in $\mathrm{CsMnF}_{3}(13)$ and $2.49 \AA$
in hexagonal BaTiO_{3} (2). In other close packed ABF_{3} compounds a similar contraction is found for the fluorine triangle that forms the common octa-hedral-site face [$2.64 \AA$ in CsCoF_{3} (11) and $2.68 \AA$ in CsNiF_{3} (11)]. This reduction in anion-anion distance to screen pairs of cations is even more general and extends to the corundum-type structures. For example, in $\mathrm{Cr}_{2} \mathrm{O}_{3}$ (16) the $\mathrm{O}_{1}-\mathrm{O}_{1}$ distance is reduced from an average distance of $2.80 \AA$ to $2.62 \AA$.

It should also be noted that the average $\mathrm{Ni}-\mathrm{F}$ distance found by Babel (2.049) is higher than our average distance ($2.035 \AA$) or the sum of the ionic radii ($2.02 \AA$) (17). The very long $\mathrm{Ni}_{11}-\mathrm{F}_{1}$ distance ($2.15 \AA$) found by Babel results because his small F_{I} triangle is not contracted although his $\mathrm{Ni}_{\mathrm{II}^{\prime}}-\mathrm{Ni}_{\mathrm{II}}$ distance is lengthened. This leads also to a smaller $\mathrm{Ni}_{\mathrm{II}}-\mathrm{F}_{\mathrm{I}}-\mathrm{Ni}_{\mathrm{II}}$ angle in Babel's refinement (78.5 ${ }^{\circ}$) than in ours (84.5°). This angle approaches 90° in the isostructural compounds $\mathrm{CsMnF}_{3}\left(88.0^{\circ}\right)$ and $\mathrm{BaTiO}_{3}\left(85.8^{\circ}\right)$. In the structurally related CsCoF_{3} (11) the corresponding angle is 84.5°. Furthermore, Smolenskii et al. (12) have shown by nmr studies that this $\mathrm{Ni}_{11}-\mathrm{F}_{1}-\mathrm{Ni}_{11}$ angle in $\mathrm{RbNiF}_{3}(6 \mathrm{H})$ is $90^{\circ} \pm 4^{\circ}$. Their data also show the $\mathrm{Ni}_{1}-\mathrm{F}_{\mathrm{II}}-\mathrm{Ni}_{\mathrm{II}}$ angle to be $180^{\circ} \pm 10^{\circ}$, which agrees both with our value $\left(178^{\circ}\right)$ and that of Babel $\left(177^{\circ}\right)$.

One can only speculate as to why there is a difference between our results and those of Babel. We do feel however that our atomic positions are more probable since they are in agreement with similar structures, nmr data and our understanding of electrostatic repulsion and screening.

Acknowledgments

We are grateful to J. R. O'Connor for providing us with a large single crystal of RbNiF_{3}. Also we are happy to acknowl-
edge valuable discussions with J. B. Goodenough and the technical assistance of D. A. Batson.

References

1. W. Rüdorff, J. Kändler, and D. Babel, Z. Anorg. Allg. Chem. 317, 261 (1962).
2. R. D. Burbank and H. T. Evans, Acta Crystallogr. 1, 330 (1948).
3. J. A. Kafalas and J. M. Longo, Mater. Res. Bull. 3, 501 (1968).
4. Y. Syono, S. Akimoto, and K. Kohn, J. Phys. Soc. Japan 26, 993 (1969).
5. J. M. Longo and J. A. Kafalas, J. Solid State Chem. 1, 103 (1969).
6. J. M. Longo and J. A. Kafalas, Mater. Res. Bull. 3, 687 (1968).
7. G. A. SmolenskiI, V. M. Yudin, P. P. Syrnikov, and A. B. Sherman, Fiz. Tverd. Tela 8, 2965 (1966); Sov. Phys. Solid State 8, 2368 (1967).
8. M. W. Shafer, T. R. McGuire, B. E. Argyle, and G. J. FAN, Appl. Phys. Lett. 10, 202 (1967).
9. R. V. Pisarev, I. G. Sinit, and G. A. Smolenski, Fiz. Tverd. Tela 9, 3149 (1967); Sov. Phys. Solid State 9, 2482 (1968).
10. R. V. Pisarev, Fiz. Tuerd. Tela 8, 2300 (1966); Soviet Phys. Solid State 8, 1836 (1967).
11. D. Babel, Z. Anorg. Allg. Chem. 369, 117 (1969).
12. G. A. Smolenskit, M. P. Petrov, V. V. Moskaley, V. S. L'vov, V. S. Kasperovich, and E. V. Zhirnova, Fiz. Tverd. Tela 10, 1305 (1968); Sov. Phys. Solid State 10, 1040 (1968).
13. A. Zalkin, K. Lee, and D. Templeton, J. Chem. Phys. 37, 697 (1962),
14. D. T. Cromer and J. T. Waber, Acta Crystallogr. 18, 104 (1965).
15. D. T. Cromer, Acta Crystallogr. 18, 17 (1965).
16. R. E. Newnham and Y. M. Haan, Z. Kristallogr. 117, 235 (1962).
17. R. D. Shannon and C. T. Prewitt, Acta Crystallogr. Sect. B 25, 925 (1969).

[^0]: * This work was sponsored by the Department of the Air Force.
 \dagger Current address: Division of Engineering, Brown University, Rhode Island.

[^1]: ${ }^{a}$ Our results are listed first with estimated error limits in parentheses; Babel's results (11) are listed second for comparison.

[^2]: * Not observed but assigned an intensity of 0.05 during refinement.
 \dagger Not used in refinement.

